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Abstract. We invcstigale the Lie series representation of the canonical transformations in a 
complex phase space It is shown fhal any canonical mapping in the complex domain can be 
labelled by two different functions. One of these functions corresponds to an observable in the 
sense of classical mechanics. The second one has special analytic properties and can be used to 
form quantities which are important In quantum statistical mechanics. In particular we show that 
lhe eutmpy of ideal quantum gases generales a special canonical transformation and, moreover, 
the entropy itself can be represented as a Lie function formed by a special characteristic function. 

1. Introduction 

In mathematics it is well known that investigation in the complex domain usually simplifies a 
problem, rather than making it more complicated. This is a motivation to study Hamiltonian 
mechanics in a complex formulation. Such a formulation seems to be very natural because 
one complex equation of motion is the same as two real ones. However, the complex 
treatment only of the harmonic oscillator makes its way into the physical textbooks. On 
the other hand, complex structures play an important role in quantum mechanics. For 
instance, Lahti and Maczynski [l] have shown that the Heisenberg inequality can only be 
derived in the complex field framework. In the classical limit of quantum mechanics one 
separates the Schrodinger equation into real and imaginary parts and only the real phase 
of the wavefunction is important for h + 0. But the connection between the commutators 
and Poisson brackets is difficult to explain in this limit. One may hope that the connection 
between quantum and classical mechanics becomes more apparent if the same number field 
for the mathematical apparatus is used in both theories. In fact, Strocchi [2] has shown 
that classical and quantum mechanics may be embedded in the same formulation by using 
complex coordinates. A similar treatment can also be found in [3], where the generator 
aspect of observables is emphasized. 

The investigation of the generator aspect of observables is always connected with the 
study of the basic transformation properties of the corresponding theory. In this paper we 
are interested in the canonical transformation groups and their action on a complex phase 
space. In order to study the generator aspect of canonical transformations, the Lie series 
representation is more appropriate than the generating function which depends upon old and 
new coordinates. Compared to the standard result in a real phase space (cf [4,51) there are 
some differences because of the complex nature of the generating function. In particular, Lie 
transformations exist which are not canonical ones [6]. In this paper we demonstrate that 
any canonical transformation in' the complex phase space can be marked by two different 
functions. One of these functions is a real generating function which corresponds to an 
observable in the sense of classical mechanics. The second one is a complex-valued function 
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7236 B Bruhn 

with special analytic properties (holomorphic or antiholomorphic). Moreover, an example 
is given which shows that one can form quantities from this complex function which are 
important in quantum statistical mechanics. This suggest that the transformation apparatus 
of the classical theory contains more basic physical information than is generally supposed. 

In order to make the paper self-contained some of the properties of Lie transformations 
in a complex phase space are given in section 2. In section 3 we discuss the condition 
which selects the canonical transformations from the Lie transformations and in section 4 
some special transformations are considered. Finally, we show that the entropy of ideal 
quantum gases can be represented as a Lie function. 

2. Lie transformations in complex phase space 

We consider coordinate transformatiom in a finite dimensional complex vector space of the 
type 

Zk -+ Wk = wk(z]. 2;) 

where zk(k = 1 . . . N) are the old and Wk the new coordinates, respectively (* denotes the 
complex conjugate). Such a transformation is a canonical one if the new coordinates fullil 
the conditions 

{ W j ,  wk) = 0 Iwj, w:) = a j k  (2.1) 

where the Lie product of two complex-valued functions A(zr, z;)  and B(z t ,  2;) is delined 
by the Poisson bracket operation 

a A a B  a A a B  
{ A ,  B )  = (-- azk az; - --) az; azk . k=l 

Let A be a specified function depending upon zk and zkf. Then associated with A is a linear 
differential operator (the Lie operator, the Hamiltonian vector field) 

It is straightforward to calculate the commutator of two such operators 

[2A, k B 1  = 2 lA.B)  (2.4) 

i.e. the Lie operators form a Lie algebra under commutation which is homomorphic to the 
Poisson bracket algebra of the phase space functions. 

Lie series are defined by infinite operator power series, where the exponential series 

are of particular interest. We shall call the action of exp(kA) on phase space functions a Lie 
transformation associated with the complex valued generating function A(za, 2;). There are 
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some basic properties of the Lie transformations which are important for their applications 
(6 and y are complex numbers) 

(e'A.')'B = (eiAB*)* = e-2A.B 

The proofs of these properties are based upon the power series definition and can be adopted 
from Steinberg [5].  There are some other exponential identities which are important for 
applications of Lie series. For example 

The product of two Lie transformations is once more a single Lie transformation. The 
celebrated Baker-Carnpbell-Hausdorff (BCH) theorem then shows how one must combine 
a product of exponentials into an exponential of a sum [4,5,7]. Then we can write 

. .  = ,x, ,x. 

with 

% c = % A + J i B + l [ % A r ~ B ] + ~ [ % A - B ~ [ % A , ~ B ] ] f . " .  (2.7) 

Closed formulae can be given for certain Lie operators forming finite algebras [7]. 
Consequently, (2.4) provides a connection between the generating functions 

C = A + B + ~ ( A , B } + ~ ( A - B , { A . B } } + . . .  . (2.8) 

We note that the mapping A + .?A is linear and unique, but it is not invertible. If there 
are two operators with 2~ = 2~ we can conclude only that the difference (A - B) has 
no functional dependence on the complex coordinates zk, z;. but it may depend upon some 
additional parameters. Therefore the function C in (2.8) is determined up to a constant only 
which may depend on these parameters. However, the constant is a trivial one because the 
phase space functions serve as generating functions and the Lie operator is always unique. 
We shall call the phase space function C(ZX, z;) which arises from the BCH formula (2.8) 
a Lie function formed by A and B .  There are some cases in which the Lie function has 
special properties. For instance, let A(zk, z;) be an arbitrary function and B = A*& z;) 
the conjugate complex function. Then 

" -  
ex, = ,XA ex"' 

and with 

one obtains 

C = c '  (2.9) 
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i.e. the Lie function is real (up to the trivial constant). Up to now, we have not discussed 
the convergence of Lie series expansions. This is a complicated matter; however, some 
estimates are known (cf [SI). Moreover, there are only very special cases in which the 
sum can be done in closed form. One of these cases is realized for holomorphic or 
antiholomorphic generating functions. These functions are defined by 

C = G(Q) = holomorphic 
ac - = {zi ,  G) = 0 

aF 
azt 

CJ az; 

[F. z;}  = 0 o F = F(z;) = antiholomorphic -= 

and the corresponding Lie transformations become 

(2.10) 

i.e. the infinite sum reduces to a single term and the transformation is a gauge type one. 
Another case is given by the phase transformations of the complex coordinates. Let 

be the unitary invariant and let CY be a real parameter. The sum can he done in closed form 
and one finds (i2 = -1) 

Moreover, with CY = rr(+2krr) we have a reflection of all coordinates 

(2.11) 

3. Canonical transformations 

In [6] we investigated two types of transformations of the complex coordinates given by 

where CP, Y are complex valued generating functions. Therefore the transformations (i). (ii) 
depend upon two real functions-the real and the imaginary part, respectively, of CP or Y. 
Instead of T'(4) we sometime will use the notation TB(S,  a) to indicate the dependence 
upon the real part S Re(0) and the imaginary part C2 = Im(0). 
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The first type (i) has an infinitesimal l i t  whereas (ii) is not connected with the 
identity. Also for the differential characterization given in [Z] one obtains these two types, 
i.e. transformations which are connected with the identity and those which are not. The 
transformations (3.1) are canonical mappings if and only if the generating functions fulfil 
the conditions 

These conditions duectly follow from (2.1) by use of (2.5); however, they can be further 
simplified. Multiplication with exp(-k,.) and exp(2p.) from the left and application of 
xz; * = - aiaz, and fz, = aiaz; yields 

a 

We define the Lie functions t(Zk, z;) and ?7(Zk, z;) by Setting 
" "  

ex. E ex* (3.3) = - 

and obtain after integration with respect to the coordinates 

(3.4) 

where Fk(zf) and Gk(zj) are antiholomorphic and holomorphic functions, respectively. In 
the next step we show that the N functions Fk(z;) can be derived from a single function 
F(z,f). Differentiation of (3.4)(i) with respect to z; provides 

J 

and therefore 

On the right-hand side we add a zero given by 

and use the properties of the Poisson bracket and the bracket preservation property of Lie 
series in (2.5) to find 
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where the last equality follows kom (3.4)(i). The Poisson bracket of 4 and Fk vanishes 
because all Fk are antiholomorphic functions. Therefore we obtain 

i.e. the Fx are gradient type functions. An analogous calculation is also possible for the 
functions Gk(zj)  in (3.4)(ii) and yields 

With (3.5) and (3.6), equation (3.4) becomes 

(3.6) 

(3.7) 

We shall call the functions F(z;) and G ( z j )  the characteristic functions. Note that the 
generating functions 0, W and the characteristic functions F ,  G are not independent. The 
connection is given just by (3.3) and (3.7). In order to find this connection in a more direct 
form, we study the action of exp(-&) on the conjugate complex coordinates z;. We start 
with the complex conjugate of (3.7)(i), 

where we have used the fact that e(zk, z;) is a real Lie function which arises !?om (3.3) 
and (2.9). Consequently, 

and with 

we have 

A similar treatment for the type (ii) transformations yields 

(3.9) 

(3.10) 
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(3.11) 

The proof can be found by a straightforward calculation which starts frum (3.10) and uses 

With (3.10) we know the action of exp(-&) and exp(2,) on the complex coordinates 
(2.5), (2.10) and (2.11). 

and therefore we also know the action on an arbitrary phase space function 

e-$ A(zk, z;) = e-tF(z*) e-2PVJA(zk, zz) efvA(zk, z;) = e&O @*J e-%C*wA(zk, 2 ; ) .  

(3.12) 

Since this is hue for any function A(z6, z;), we have the operator relations 

(9 e-%< = e-%** = e-R,*, e-tF'"" 

(ii) e%. = = e-%Gw e-x,*, 
(3.13) .~ ~. 

i.e. the Lie transformations (3.1) providing they converge, are canonical mappings if there 
exist characteristic functions F(z*) and C(z) such that the generating functions @(z, 2') 
and W(z, z*) satisfy (3.12). The Occurrence of the reflection operator in (3.12)(u) is a direct 
indication that the type (ii) transformations are not connected with the identity. 

Because of (3.11) the following identities are valid for the Lie functions c(z, z*) and 
v(z, z*): 

.~ 
.t(zk I zk *) - - e-2Fv> e-~Plz*)~(zn, z;) q(zt r k -  z*) - e-fC(z) einxJ e-xo*lr) v ( Z k r  2;) , 

One finds a more explicit form after application of (2.5) and (2.10) on the right-hand side. 
These are identities for the Lie functions; however, we are mainly interested in the properties 
of the generatin$ functions. Therefore we investigate the action of the transfonnation 
operator exp(-XQ) on the complex conjugate coordinates 2:. The complex conjugate of 
(3.7) is given by 

With 

w;=e Pm. zk * 
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and 

one obtains 

aF*(w,*) e-xmz* - w* 
awk ' 

k -  k -  (3.14) 

Equations (3.1) and (3.13) then determine the action of the transformation operator on the 
complex coordinates 

For the type (ii) transformations a similar treatment yields 

(3.15) 

(3.16) 

With (3.14) and (3.15) we also know the action of the transformation operators on arbitrary 
phase space functions A(zk, z i ) .  In particular, one finds for the generating function 

and, with (3.14), 

Moreover, considering the type (ii) transformations, 

(3.17) 

(3.18) 

Equation (3.16) clearly shows that the generating function @ is not an invariant function 
for all non-trivial F. This seems to be a contradiction to the Lie series representation of 
canonical transformations in a real phase space because in that case the (real) generating 
function is always an invariant one. We discuss the solution of this problem in section 
4. The investigation of (3.17) is a more complicated matter because there is an additional 
exchange of the slots of the independent variables in this function. There is at least one 
example with G # 0, such that \Ir is an invariant (cf section 5). However, we expect that 
this is not the generic case. 
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4. Special types of canonical mappings 

In order to study the meaning of the generating and characteristic functions, respectively, 
we consider some special canonical transformations. First of all we look for type (i) 
transformations which have an invariant generating function. With (3.16) we conclude 
that these mappings are characterized by 

F(z;) = c(= 0) (4.11 

where c is an arbitrary constant which can be chosen equal to zero. Moreover. (3.12)(i) 
reduces to 

e-&. = 1 

i.e. the complex conjugate function @* generates the inverse transformation. This is realized 
by 

@* = -@ + @(z,z*) = is2(z, z*) s2 = Q* (4.2) 

i.e. the generating function is a pure imaginary one. Note that we have neglected a trivial 
constant in (4.2). Then the real function Q is an invariant under the transformation which 
they generate. Of course, this type of transformation is the counterpart to that in a real 
phase space (cf [4]) and the function S2 is an observable in the sense of classical mechanics. 
Particularly, the motion of a classical physical system is determined by the unfolding-in-time 
of a canonical transformation. The generating function of this special type of transformations 
is the real Hamiltonian H ( z k ,  z;). By setting 

@ = is2 = -itH 

and taking the infinitesimal limit t + 0 in (3.1)(i), one obtains the equations of motion 

(4.3) 

where the overdot indicates differentiation with respect to the time parameter. Of course, 
equation (4.3) are the famous Hamiltonian equations in a complex form (cf [21). 

Canonical transformations are one of the cornerstones of classical mechanics; however, 
our consideration shows that a very small part of the full group is usually used. All 
mappings with F(z*) # 0 and all mappings of the type (ii) do not play any role in classical 
mechanics. Then the most interesting question is whether these other transformations have 
an application in other fields of physics. Before we attempt an answer to this question, the 
transformations with F # 0 must be studied. Let @(z, z*) and F(z" )  be sufficiently small. 
Then (3.12)(i) in the neighbourhood of the identity reduces to 

1 - i@* - 20 + ' ' ' = 1 - &*) - &.) t 

and therefore 

(4.4) 
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i.e. the characteristic function F determines the real part S(z, z') of the generating function 
in the limit of infinitesimal transformations. This is valid in the case of some global 
transformations too. Let 

@(z, z') = S(z, z') + iQ(z, z') 

and 

(@,@*]=o +!. (S,S2)=0 

then it is easy to see that (3.12)(i) yields 

{(Zkq Z i )  = 2S(Zk, 2;) (4.5) 

i.e. the Lie function formed by F and F* provides the real part S of the generating 
function. Moreover, the imaginary part R of the generating function is not fixed by means 
of (3.12)(i) and therefore it can be arbitrarily chosen. We see that there are two possibilities 
for characterizing the canonical transformations of the type (i). Suppose that S and R are 
given and therefore '&(S. R) is known. Then one has to check whether there exists a 
function F such that condition (3.12) is fulfilled. On the other hand, given an arbitrary 
antiholomorphic F and a real function R, one has to calculate the real part S according to 
(3.12). After that one can form the transformation by computation of the Lie series. The 
analysis of (3.12) may be a complicated matter in both cases, however, we have, at least in 
principle, 

(F,Q) (Ssa) * TB(@) (4.6) 

i.e. we can mark the transfonnations by the pair (S, S2) or (F, a). A similar statement is 
also valid in the case of the type (ii) transformations. 

A very important question is connected with the combination of the type (i) and (ii) 
transformations. respectively. We consider the following special case only. Let @ and 
UI be the generating functions of the type (i) and (ii) respectively. Then we consider all 
transformations which have the same characteristic function, i.e. 

GYzj)  = F(z;) (4.7) 

Hence, (3.12) becomes 
. ^  = e'" = e'"', 

moreover, after elimination of exp(- ip)  

e+ = e- 2 r e  2 0 e 1 F  e -ink, 

Using (2.6) and (2.10) one obtains 

-2 h i  

and with (2.7) and (2.8) 

- 
e e ' = expX,(,,+aF/az:.z:) 

(4.8) 
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i.e. the Lie functions e and q are not independent for G* = F. We note that (4.8) is not 
unique because the generating function of the reflection operator is not unique. This defect 
can be removed by the substitution in -+ irr + izirn, n = 0, f l ,  . . . in (4.8). 

In the remaining part of this section we give some heuristic arguments which show that 
the real part of the generating function can possibly be connected with the entropy. We 
begin with the observation that there are equivalent @ansformations with 

TB(S. R = 0) TB(S = 0, s1). (4.9) 

which means that different generating functions generate the same mapping of the complex 
coordinates. A very simple example of this type is given by the functions 

where both functions generate the same shift of the complex coordinates Zk given by 

Of course, condition (3.12)(i) is fulfilled in the case of with a trivial characteristic 
function Fz = 0. On the other hand, @I corresponds to a transformation with a characteristic 
function Fl(z*) = Gakz; .  We note that k ~ ,  and kr commute and the evaluation of the 
BCH series in (3.12) is a simple task. 

Suppose that (4.9) is also true for other functions, in particular for R = - t H .  Then we 
have 

exp(-&)zk = exp(it2B)zk. 

In order to compare the two series we assume S = S ( H ) .  Hence, 

Then the comparison shows that the series are linked by the substitution 

dS 
it ----f - 

dH 
(4.10) 

where the negative sign is not important because it can be absorbed in the definition of the 
parameter t .  A similar transition from quantum mechanics to statistics is well known and 
can be realized by 

(4.11) 

where k~ is the Boltzmann constant and T is the thermodynamic temperature. In the case 
that we accept (4.11). the comparison with (4.10) yields 

dS 1 
dH ~ B T  
_ N _  (4.12) 
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which shows the thermodynamic relation between entropy (represented by S), energy 
(represented by H )  and the temperature T. Of course, this is not an exact proof, however, 
the consideration shows the direction in the search for an interpretation of the real part 
s (Zk ,  Z;). 

One of the most fundamental properties of: the entropy is the increase during an 
irreversible physical process. A similar property can be found for the real part of the 
generating function too. Let @, F be the generating and characteristic function, respectively, 
of an infinitesimal canonical transformation. 

@(z, 2') = SES - iStH F(z*)  = S E f  (z") (4.13) 

where SE and St are small real parameters. Using (4.4) we get 

S(Z, z') = i(f(z*) + f'(z*)) H = arbitrary 

and the infinitesimal transformation of the coordinates is given by the linear terms in the 
parameters SE and 6t 

aH 
iSt- . SZk = Wk - z k  =SE-  -1St- = -- - as . aH SE af 

az; az; 2 az; az; 
Now we calculate the increment of S(zk, 2;) with respect to this transformation 

k= I 

Inserting the infinitesimal transformations 6zt, Sz; one obtains 

(4.14) 

Hence, in the special case S = S ( H )  the Poisson bracket (S, H ]  vanishes, i.e. the function 
S is a conserved quantity with respect to the time evolution (variation of St). Nevertheless, 
we find with SE > 0 an increment of S under the transformation given by 

(4.15) 

where the connection S = $(f(z*)+f'(z*)) is used on the right-hand side. More precisely, 
(4.15) shows the property of monotony only because the sign of SE can be arbitrarily chosen. 
It must be underlined that the validity of (4.15) is not secured for (S, H )  # 0 and in the 
case of global transformations. Of course, the infinitesimal transformation with SE # 0 
also changes the imaginary part of the generating function. The corresponding increment 
is given by 

(4.16) 

We close this section with the remark that by elimination of SE in (4.15) and (4.16) a direct 
connection between SS and SH can be obtained. 
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5. Entropy of ideal quantum gases 

The discussion of section 4 indicates that there are some hints that the canonical 
transformations with a non-trivial characteristic function can be connected with important 
physical quantities. Then the real problem is the realization of examples of exact global 
transformatiom. In [6,9] we have investigated two special types of transformations, where 
the generating function is determined by the entropy of an ideal quantum gas. However, the 
connection between the generating and characteristic functions has not been analysed up to 
now. Here we shall fill this gap. In order to make this section self-contained, a modified 
derivation of the transformations in question is given which is based on the content of 
section 3. 

At first we consider the type (i) transformations and choose the following characteristic 
function 

where the ak are real parameters. The logarithmic function In(z*) is considered as the 
principal branch of the general logarithmic function. Let @ ( Z k ,  z ; )  be the generating function 
with 

{* ,@*)=O.  (5.2) 

Then the real part Re(@) = s ( j ) ( Z k ,  z ; )  of the generating function is given by the Lie 
function formed by F and F* (cf (4.5)) 

I .  

(5.3) 

Instead of (5.2) the simple assumption h(@) = 0 can also be used to reduce (3.12) to 
(5.3). Taking notice of ( 2 8 )  and (%I), the first few terms of the BCH expansion are given 

e -2 $ - e  - -2,%o, = e-X' , 

by 

ZS,) = F* + F + ;IF*,  F ]  + &[(F*  - F ) ,  [F*, F ] ]  + ... 
where 

where we have defined the abbreviation Ik = z;Zk. The form of (5.4) shows that the BCH 
series can be considered as a power series in the parameter ax (cf [4]), i.e. in the sense 
of perturbation theory the first few terms determine an approximation of S(i)(zk, z;)  for all 
sufficiently small ah. Furthermore we observe that the right-hand side of (5.4) depends upon 
the Ik only. This dependence suggest an ansatz of the form 

s(i) = S(i)(Zk, 2; )  = & i ) ( r k )  . (5.5) 



7248 B Bruhn 

In order to determine the function S(i)(&) we use (3.7)(i) which can be considered as a 
consequence of (3.12)(i). Inserting the characteristic function (5.1) equation (3.7)(i) becomes 

a k  

zk 
exp(-&)zi = exp(-2j&,)zk = z i  t 

where 

The infinite series can be summed up by means of the fact that z k  is an eigenfunction of 
the operator 81,. Hence, 

or 

The last integration is easy to perform and yields 

where an additional constant of integration is possible. Obviously, (5.7) is the important 
entropy formula of Planck 1101 which stands at the heginning of quantum mechanics. In 
order to check their nature as a Lie function, we calculate the power series representation 
with respect to the parameter a k  and compare the result with the BCH series (5.4). Without 
any restriction the special case of one degree of freedom is considered. The Taylor expansion 
of ((a) reads 

where 

i.e. in the limit a + 0 and I # 0 all (non-trivial) terms of the series are divergent. Moreover, 
the order of the divergence increases as the order of the expansion increases. For a moment 
this seems to be a serious problem but there is a simple renormalization procedure. We 
use the fact that the transition from (2.7) to (2.8) is not unique and the Lie function is 
determined up to a constant only. Therefore a shift 

<(z,z*,a) = t (z ,z* ,a )+c(u)  
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with a suitable c(a) can remove the divergence. It is easy to show that in our case the 
constant must be chosen to be 

c(a) = a(lna - 1). 

Then the Taylor series is regular and, moreover, it corresponds exactly to the Bm series (5.4). 
At this stage of the considerations one may suppose that the appeaence of the entropy of 
an ideal Bose gas is an accident; however, let us consider the type (U) transformations. We 
choose the same characteristic function as for the type (i) transformation 

N 
G(z*) = ~'(2;) = E a k  (5.9) 

k=l 

and make a similar ansatz as (5.5). i.e. 

Re[w(Zk. $1 = s ( i i ) ( Z k ,  2;) = s@)(h). 
Using (3.7)(ii) one can calculate the function &)(Zk). The result is 

which is, of course, the entropy of an ideal Fermi gas. In order to check the nature of 
the Fermi-entropy as a Lie function we investigate (3.12)(ii). Using (2.6) and (2.1 1) in 
(3.12)@) we get 

e-in2, = ,-2G&,, e-2c.I.-*k, , 

The op$rators 8, and 8, commute as a consequence of the dependence q ( I k )  in (5.10) and 
the Bm theorem provides 

v - irrJ + c(ad = -G(zn) - C*(-zx) + $(G(zr),  G*( - zk ) ]  

+ &{C*(-zr) - G(zr) ,  {G(Zk), G * ( - z ~ ) ] ]  + ... (5.11) 

where c(ak) is a suitable renormalization constant which is independent of zt and z;. The 
right-hand side is easy to calculate by means of (5.9) and one obtains 

On the left-hand side one can perform the Taylor expansion with respect to the parameters 
ak, where the relations irr = ln(-l), c(ak) = -Gak( lna r  - I )  and (5.10) must be used. 
We note that this Taylor expansion gives the same result as the BCH series. Of course, 
we have only calculated the fist three terms of the series, but we expect that there is also 
an agreement for the higher order powers of the parameters a k .  Because we have chosen 
the same characteristic function (5.9) for the type (i) and the type (ii) transformation, the 
relation (4.8) must be valid. The Poisson bracket [e, J ]  and all higher order brackets vanish 
as a consequence of the dependence f = {(Z,) and with (5.1) we obtain 

v(lk +at )  = - f ( l k )  + hJ (5.12) 
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where J is the unitary invariant. Equation (5.1 1) is easy to confirm by means of a direct 
calculation which makes use of (5.7) and (5.10). Moreover, one proves the validity of (3.16) 
and (3.17) in the case of the special generating functions @ = S,i, and Y = Sfij). 

One of the most important aspects of the functions s(i)(/k) and s ( j i ) ( / k )  is their generator 
property with respect to the canonical transformations, i.e. the entropy plays an active role 
similar to the energy H. The associated transformations of the complex coordinates are 
given by 

(5.13) 

(5.14) 

Hence, the Boseentropy (5.7) generates a translation wheras the Fermi-entropy (5.10) 
generates a glide reflection in the Zk-space. More precisely, the half of the corresponding 
entropies generates the transformation. The mapping (5.13)(ii) has a fixed point lying at 
z;zk = U k / 2  and, moreover, the Fermi-entropy is an invariant function with respect to the 
transformation (5.13)(ii), i.e. 

V(w;wk) = V(ak - I k )  = q(Ik) = t l ( Z h ) .  (5.15) 

A two-fold application of the type (ii) transformations yields the original coordinates Z k ,  i.e. 

T;(s(ji,, 0) = 1 

and therefore T, allows only two numerical values f k  and ak - / k  for the square of the 
modulus. This is a typical spin 4 property when the I k  are identified with measurable 
quantities, for example with the energy in the harmonic oscillator picture. We suppose that 
the connection between spin and statistics can be attributed to the more direct connection 
between entropy and associated transformations. This seems to be a very fundamental level 
of physics. 

6. Summary 

We have shown in this paper that the canonical transformations in the complex phase space 
can be labelled by two functions, e.g. by the pair n(Zk, 2:). F(z;) for the type (i) mappings. 
This is contrary to the Lie series representation of the canonical transformations in a real 
phase space because in that case there is only a single real function which generates the 
mappings. The main difference to the transformations in a real phase space is caused by the 
existence of non-trivial characteristic functions F(z;) .  The function F is a complex-valued 
one and therefore it cannot be a physical observable, Nevertheless, by using the BCH theorem 
one can form quantities from these complex functions which have an immediate physical 
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meaning. Section 5 clearly shows that the entropy of ideal quantum gases is such a Lie 
function formed by the special characteristic function (5.1). Moreover, it must be underlined 
that the entropy plays an active role because it generates a canonical transformation similar to 
the energy which generates the time evolution of the system. Obviously, the characteristic 
function is the central point of interest because it determines both the Bose-entropy and 
the Fermi-entropy. Up to now we have no principle which provides those characteristic 
functions (e.g. (5.1)) which are important in physics. However, we believe that the study 
of continuous families of canonical transformations yields some hints to the meaning of 
the characteristic function. A discussion of the relationship between finite and infinitesimal 
representations of a one-parameter subgroup of the canonical transformations (cf 1111) may 
be helpful in this connection. On the other hand, the special functional dependence of the 
functions F(z;) or G(zn) suggests that there may be a connection to the elements of the 
Bargmann space of the entire analytic functions [12]. A similar direction comes from the 
correspondence of the transformations (5.13) to the action of raising and lowering operators 
in quantum mechanics. 

Of course, there are many other important questions concerning the canonical 
transformations in the complex phase space. However, our study has shown that the 
investigation of the classical transformation apparatus in the complex domain provides 
unexpected physical results. This seems to support the view of Moshinsky and Seligman 
[I31 that classical mechanics is not, as usually assumed, a simple asymptotic form of 
quantum mechanics. 
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