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Abstract. We investigate the Lie series representation of the canonical transformations in a
complex phase space, It is shown that any canonical mapping in the complex domain can be
iabelled by two different functions. One of these functions corresponds to an observable in the
sense of classical mechanics. The second one has special analytic properties and can be used to
form quantities which are important in quantum statistical mechanics. In particular we show that
the entropy of ideal quantum gases generates a special canonical transformmation and, moreover,
the entropy itself can be represented as a Lie function formed by a special characteristic function.

1. Introduction

In mathematics it is well known that investigation in the complex domain usually simplifies a
problem, rather than making it more complicated. This is a motivation to study Hamiltonian
mechanics in a complex formulation. Such a formulation seems to be very natural because
one complex equation of motion is the same as two real ones. However, the complex
treatment only of the harmonic oscillator makes its way into the physical textbooks. On
the other hand, complex stuctures play an important role in quantum mechanics. For
instance, Lahti and Maczynski [1] have shown that the Heisenberg inequality can only be
derived in the complex fieid framework. In the classical limit of quantum mechanics one
separates the Schridinger equation into real and imaginary parts and only the real phase
of the wavefunction is important for # — 0. But the connection between the commutators
and Poisson brackets is difficult to explain in this limit. One may hope that the connection
between quantum and classical mechanics becomes more apparent if the same number field
for the mathematical apparatus is used in both theories. In fact, Strocchi {2] has shown
that classical and quantum mechanics may be embedded in the same formulation by using
complex coordinates. A similar treatment can also be found in [3], where the generator
aspect of observables is emphasized.

The investigation of the generator aspect of observables is always connected with the
study of the basic transformation properties of the corresponding theory. In this paper we
are interested in the canonical transformation groups and their action on a complex phase
space. In order to study the generator aspect of canonical transformations, the Lie series
representation is more appropriate than the generating function which depends upcn old and
new coordinates. Compared to the standard resuit in a real phase space (cf [4, 5]) there are
some differences because of the complex nature of the generating function. In particular, Lie
transformations exist which are not canonical ones [6). In this paper we demonstrate that
any canonical transformation in the complex phase space can be marked by two different
functions. One of these functions is a real generating function which corresponds to an
observable in the sense of classical mechanics. The second one is a complex-valued function
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7236 B Bruhn

with special analytic properties (holomorphic or antiholomorphic). Moreover, an example
is given which shows that one can form quantities from this complex function which are
important in quantum statistical mechanics. This suggest that the transformation apparatus
of the classical theory contains more basic physical information than is generally supposed.

In order to make the paper self-contained some of the properties of Lie transformations
in a complex phase space are given in section 2. In section 3 we discuss the condition
which selects the canonical transformations from the Lie transformations and in section 4
some special transformations are considered. Finally, we show that the entropy of ideal
guantum. gases can be represented as a Lie function.

2. Lie transformations in complex phase space

We consider coordinate transformations in a finite dimensional complex vector space of the
type

e — Wy = w,g(Zj,Z;)

where zx(k = 1... N) are the old and w; the tiew coordinates, respectively (* denotes the
complex conjugate). Such a transformation is a canonical one if the new coordinates fulfil
the conditions

{wj,un} =0 {w;j, wg} = 8u 2.1

where the Lie product of two complex-valued functions A(z, z}) and B(zg, 23) is defined
by the Poisson bracket operation

N
(4.8)=3 (BA 3B 3A aB) - 22

Let A be a specified function depending upon z; and z;. Then associated with 4 is a linear
differential operator (the Lie operator, the Hamiltonian vector field)

N
)A{A=Z(ﬁ_§.__%i) ) 2.3)

=7 \Pzx 8z;  0z; 0z
It is straightforward to calculate the commutator of two such operators
(%4, X2} = Xis, . e

L.e. the Lie operators form a Lie algebra under commutation which is homomarphic to the
Poisson bracket algebra of the phase space functions.
Lie series are defined by infinite operator power series, where the exponential series

~ X1 - n
expXa) =) —Xa  (R)°=1
n=0 """

are of particular interest. We shall call the action of exp(}? 4) on phase space functions a Lie
transformation associated with the complex valued generating function A(zy, z;). There are
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some basic properties of the Lie transformations which are important for their applications
(B and y are complex numbers)

@yB=@"By =ecfrp 4 (BB+yC)=petiB+yeleC
A (BC) = € B)e*rC) (B, C} = (¢¥4B, F4 () (2.5)
¥ Pz, 20) = Fe¥oze, eMzd) .

The proofs of these properties are based upon the power series definition and can be adopted
from Steinberg [5]. There are some other exponential identities which are important for
applications of Lie series. For example

cfﬂ}?g ¥ = ie-“as eX1efs = exp(ffegw) e¥s . (2.6)

The product of two Lie transformations is once more a single Lie transformation. The
celebrated Baker—Campbell-Hausdorff (BCH) theorem then shows how one must combine
a product of exponentials into an exponential of a sum [4,5,7}. Then we can write

e _ o ha
with
XC = XA’A + XB + %[2}1' -i'B]"*' ﬁ[gdwﬂs [XA'A;XA'B]] +--e (2'7)

Closed formulae can be given for certain Lie operators forming finite algebras [7].
Consequently, (2.4) provides a connection between the generating functions

C=A+B+iA Bl+5{A-B,{A,B}}+---. (2.8)

We note that the mapping A — X, is linear and unique, but it is not invertible. If there
are two operators with ¥4 = X we can conclude only that the difference (A — B) has
no functional dependence on the complex cocrdinates z;, z7, but it may depend upon some
additional parameters. Therefore the function € in (2.8) is determined up to a constant only
which may depend on these parameters. However, the constant is a trivial one because the
phase space functions serve as generating functions and the Lie operator is always unique.
We shall call the phase space function C{z,z}) which arises from the BCH formula (2.8)
a Lie function formed by A and B. There are some cases in which the Lie function has
special properties. For instance, let A(z;, z;) be an arbitrary function and B = A*(z, zf)
the conjugate complex function. Then

efc —_ e)?'“ 624‘

and with

e—.’?ct = (eXn'c)* = (e)lfd e)?,p)* = e—f,qt C—i“‘ = e—-Xc
one obtains

C=C (2.9)
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i.e. the Lie function is real (up to the trivial constant). Up to now, we have not discussed
the convergence of Lie series expansions. This is a complicated matter; however, some
estimates are known (cf [8]). Moreover, there are only very special cases in which the
sum can be done in closed form. One of these cases is realized for holomorphic or
antiholomorphic generating functions. These functions are defined by

aG
Fr {2, G} =0 <& G = G(z;) = holomorphic
%
aF . . .
n ={F.z;}=0 <4 F = F(z}) = antiholomorphic

and the corresponding Lie transformations become

#(3) = (a'tea) = (g sdma)
Z; g+ Xozt 7y + 3G @)/ 0z

s () = (34 50 _ (= 2m5) 210

Z; Z; zz

i.e. the infinite sum reduces to a single term and the transformation is a gauge type one.
Another case is given by the phase transformations of the complex coordinates. Let

N
J = ZZIZI:
k=1

be the unitary invariant and let o be a real parameter. The sum can be done in closed form
and one finds (iZ = —1)

ks (zk) _ (e““zk)
25 e zy

Moreover, with o = m(+2kxr) we have a reflection of all coordinates
inX Zk Zk
e s =- . 2.11
) ) @10

3. Canonical transformations
In [6] we investigated two types of transformations of the complex coordinates given by

() Te(®) : wy = exp(—X o)
(3.1)

(i) Te(W):  wi=exp(Xe)z}

where ®, ¥ are complex valued generating functions. Therefore the transformations (i), (ii}
depend upon two real functions—the real and the imaginary part, respectively, of ¢ or W.
Instead of T(P) we sometime will use the notation Tg(S, ) to indicate the dependence
upon the real part S = Re(d) and the imaginary part & = Im($).
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The first type (i) has an infinitesimal limit whereas (ii) is not conmected with the
identity. Also for the differential characterization given in [2] one obtains these two types,
i.e. transformations which are connected with the identity and those which are not. The
transformations (3.1) are canonical mappings if and only if the generating functions fulfil
the conditions

) Oy = —e¥or }'E'z; et gRoy,

x Zor o (3.2)
(“) 8” = —e"xln‘ }?Zj eth e.k'q,z; .
These conditions directly follow from (2.1) by use of (2.5); however, they can be further

sunphﬁed Multhhcatlon with exp(-X¢.) and exp(X\p-) from the left and application of
Xz- = —8/dz; and ij = 3/dz} yields

i = 3 Koo oo

() 8 = 5 (e € z;;)

(D 8y = _2 (eftm e’?"’zz) ]
az;

We define the Lie functions &(z¢, z;) and n{zx, z;) by setting

e Xt = g Xor =Ko efn e ofue oo (3.3)
and obtain after integration with respect to the coordinates

() exp(—X)z, = z¢ + Bl
(3.4)

(i) exp(X)2; = —z} + Gilzy)

where Fi(z¥) and G(z;) are antiholomorphic and holomorphic functions, respectively. In
the next step we show that the N functions Fi(z}) can be derived from a single function
F(z}). Differentiation of (3.4)(i) with respect to z}‘ provides

3F, 3 [ _; 3
= —_— 3 = {z. 4
b o (e Zk) {z;. 7%z}

and therefore

oF, OJF -8 -%
Frea é}'i" = {z;, e™ %z} + ez, 2}
3 k

On the right-hand side we add a zero given by

= ~[z;, 24} — e~ ‘{zj, Ze}

and use the properties of the Poisson bracket and the bracket preservation property of Lie
series in (2.5) to find

8F, 3F

Bz}!‘ -5?;

(e~ % - Dz, €% — ) = —{F;, Fil
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where the last equality follows from (3.4)(i). The Poisson bracket of F; and #; vanishes
because all F; are antiholomorphic functions. Therefore we obtain

IF(Z))

o 3K
3z

* *
aZj sz

= RE= (3.5)

i.e. the F, are gradient type functions. An analogous calculation is also possible for the
functions G(z;) in (3.4)(ii} and yields

3Gk an aG(zj)
— L = 0 G 1) = . 3.
3z, A = #&) 3zi @9)
With (3.5) and (3.6), equation (3.4) becomes
. - aF(z})
@) exp(—Xy)z = 2 + az*J
* €X)
~ BG i
(ii) exp(X,)z; = —z; + 36() .
9z

We shall call the functions F(z]) and G(z;} the characteristic functions. Note that the
generating functions &, ¥ and the characteristic functions F, ¢ are not independent. The
connection is given just by (3.3) and (3.7). In order to find this connection in a more direct
form, we study the action of cxp(—ff;) on the conjugate complex coordinates z;. We start
with the complex conjugate of (3.7)(1),

IF*(z})

s = exp(R)a} = exp()e
Zk

Z+

where we have used the fact that §(z;, z7) is a real Lie function which arises from (3.3)
and (2.9). Consequently,

. s AF*(Z3)
=X * * -X tl
e fz =7 =T
k k 8z
and with
o {OF*(ZTH) 5 - o - AF(z*) ? IF*(z*)
e—XE (_j) =3_X$F 2i) = F euxfz = F z+_ = _'F* ZT+—)
Y k(2;) 11¢ 1) 1¢s 52 ) o ; 32,
(3.8)
we have
5 9 aF*(z")
._X;z#=z*__Fu(s« ) 39
¢ k k 0zi y+ az; e
A similar treatment for the type (ii) transformations yields
. G*
Cx"zk = —Z; — a*G*('—Zj-F'?#). (310)
3zk aZI
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It is easy to show that (3.7), (3.8) and (3.9) are equivalent to

@ e~%s zi = e~rem g~ X “"(zi
2k Lk

(u) e‘i.u (Z_:) = e_ga(z) eiﬂ'i'.r e—fa“'(zl (Zk)

ZE i

(3.11)

The proof can be found by a straightforward calculation which starts from (3.10) and uses
(2.5), (2.10} and (2.11). X

With (3.10) we know the action of exp(—X;) and exp(i' ) on the complex coordinates
and therefore we also know the action on an arbitrary phase space function

e X Az, ) = e TR e AP Az, 7)) e®A(g, 7)) = e How s g=Xovo f (7, zp) .

(3.12)
Since this is true for any function A(z, z}), we have the operator relations
o) % — oK oo _ o~ Rrer g=Rrvim
(ii) ol efor gy _ o~Row ginks g-Zova G.13)

i.e. the Lie transformations (3.1) providing they converge, are canonical mappings if there
exist characteristic functions F(z*} and G(z) such that the generating functions ®(z, z*)
and W¥(z, z*) satisfy (3.12). The occurrence of the reflection operator in (3.12)(ii) is a direct
indication that the type (ii) transformations are not connected with the identity.

Because of (3.11) the following identities are valid for the Lie functions £(z, z*) and

n(z, 2%):
E(zp, 2p) = e XFem e EAR@E(g, ) n(zp, 7)) = e X0 X g Harwp(zy, 7Yy,

One finds a more explicit form after application of (2.5) and (2.10) on the right-hand side.
These are identities for the Lie functions; however, we are mainly interested in the properties
of the generatinﬂg functions. Therefore we investigate the action of the transformation
operator exp(—Xg) on the complex conjugate coordinates z;. The complex conjugate of
(3.7) is given by

o s dF*(z")
ereete st — g 4 —d
azk
or
. . L BF*(])
e Xozk = efoz} — X L.
8z

With

wp =¢"*'z
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and
e'j"’ AF*(z]) _ aF*(w})
8z ) Bwy
one obtains
. aF*(w?)
e %oy =l — ka : (3.14)

Equations (3.1) and (3.13) then determine the action of the transformation operator on the
complex coordinates

—J?.,, Zk — Wk
© (Z?c‘) (wf - 3F*(w}‘)/awk) ' (3.13)
For the type (i) transformations a similar treatment yields
R (Zk) _ (—wk +9G (wj)/awk) | 16
Zx Wy

With (3.14} and (3.15) we also know the action of the transformation operators on arbitrary
phase space functions A(zg, z;). In particular, one finds for the generating function

O(zi, 2}) = e 0D (24, 27) = Ple >0z, e7oz))

and, with (3.14),

BF*(w*
<I’(zk,z:)=¢(wk.w;: - ’)). 3.17
Bwk
Moreover, considering the type (i} ransformations,
. . 0GT(w))
W(zk, 2) = \I’(—wk+——,wk). (3.18)
dun,

Equation (3.16) clearly shows that the generating function & is not an invanant function
for all non-trivial ¥. This seems to be a contradiction to the Lie series representation of
canonical transformations in a real phase space because in that case the (real) generating
function is always an invariant one. We discuss the solution of this problem in section
4, The investigation of (3.17) is a more complicated matter because there is an additional
exchange of the slots of the independent variables in this function. There is at least one
example with G # 0, such that ¥ is an invariant (cf section 5). However, we expect that
this is not the generic case,
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4. Special types of canonical mappings

In order to study the meaning of the generating and characteristic functions, respectively,
we consider some special canonical transformations. First of all we look for type (i)
transformations which have an invariant generating function. With (3.16) we conclude
that these mappings are characterized by

Fzp)=c(=0) (4.1)

where ¢ is an arbitrary constant which can be chosen equal to zero. Moreover, (3.12)(i)
reduces to

g KergmXo = 1

Le. the complex conjugate function ®* generates the inverse transformation. This is realized
by

O = —P & Pz, 2" =iz, %) Q= 4.2)

i.e. the generating function is a pure imaginary one. Note that we have neglected a trivial
constant in (4.2). Then the real function £2 is an invariant under the transformation which
they generate. Of course, this type of transformation is the counterpart to that in a real
phase space (cf [4]) and the function Q is an observable in the sense of classical mechanics.
Particularly, the motion of a classical physical system is determined by the unfolding-in-time
of a canonical transformation. The generating function of this special type of transformations
is the real Hamiltonian H(zz, z}). By setting

P =i =—itH
and taking the infinitesimal limit ¢+ — O in (3.1){i), one obtains the equations of motion

aoH

8z} @3

L =X gz = —i

where the overdot indicates differentiation with respect to the time parameter. Of course,
equation (4.3} are the famous Hamiltonian equations in a complex form (cf [2]).

Canonical transformations are one of the cornerstones of classical mechanics; however,
our consideration shows that a very small part of the full group is usually wsed. All
mappings with F(z*) # 0 and all mappings of the type (ii) do not play any role in classical
mechanics. Then the most interesting question is whether these other transformations have
an application in other fields of physics. Before we attemnpt an answer to this question, the
transformations with F = 0 must be studied. Let ®(z, z*) and F{z*) be sufficiently small.
Then (3.12)(i} in the neighbourhood of the identity reduces to

1-—2@»—}21;-%--”=1—-J?F(zr)—fp(zm)+---
and therefore

S(z,z*) = Re[®(z,2*)] = 3(F(*) + F*(@") + - - 4.4
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i.e. the characteristic function F determines the real part S(z, z*) of the generating function
in the limit of infinitesimal transformations. This is valid in the case of some global
transformations too. Let

®(z,z%) = 8z, 2") +iQ(z, 2%
and
{®, 9"} =0 & {(5,Q}=0
then it is easy to see that (3.12)(1) yields
§(zr, ) = 25(24, 7g) (4.5)

i.e. the Lie function § formed by F and F* provides the real part S of the generating
function. Moreover, the imaginary part Q of the generating function is not fixed by means
of (3.12)(i) and therefore it can be arbitrarily chosen. We see that there are two possibilities
for characterizing the canonical transformations of the type (1). Suppose that S and €2 are
given and therefore T5(S, 2) is known. Then one has to check whether there exists a
function F such that condition (3.12} is fulfilled. On the other hand, given an arbitrary
antiholomarphic F and a real function £2, one has to calculate the real part § according to
(3.12). After that one can form the transformation by computation of the Lie series. The
analysis of (3.12) may be a complicated matter in both cases, however, we have, at least in
principle,

(F,2) & (5,9 = TP (4.6)

i.e. we can mark the transformations by the pair (S, Q) or (F, ). A similar statement is
also valid in the case of the type (ii) transformations.

A very important question is connected with the combination of the type (i) and (ii)
transformations, respectively. We consider the following special case only. Let ¢ and
¥ be the generating functions of the type (i) and (ii) respectively. Then we consider all
transformations which have the same characteristic function, i.e.

G*(zj) = F(z}) 4.n
Hence, (3.12) becomes

=X — g=kr g=&p o¥n = o kp gindy o-Rp
moreover, after elimination of exp(— Xp)

e Xt = o~ Er oMy Er g-inky
Using (2.6) and (2.10) one obtains

-3y gin

2 -~
e ! = exp Xn+aF/azz)

and with (2.7) and (2.8)

] . i
Nt o) =~ +imd — S, T} 38)
Zk 2
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i.e. the Lie functions § and » are not independent for G* = F. We note that (4.8) is not
unique because the generating function of the reflection operator is not unique. This defect
can be removed by the substitution ir — im + i2%n, n =0,%£1,... in (4.8),

In the remaining part of this section we give some heuristic arguments which show that
the real part of the generating function can possibly be connected with the entropy. We
begin with the observation that there are equivalent transformations with

r@E,Q=0 = T{(§=0Q). 4.9)

which means that different generating functions generate the same mapping of the complex
coordinates. A very simple example of this type is given by the functions

N N
®; =Y a;Re(z;) O =—iy amz)  aeRY

j=1 j=t

where both functions generate the same shift of the complex coordinates z; given by

wy = ek = e"?"‘zz;c =z 4+ %
Of course, condition (3.12)(1) is fulfilled in the case of ¥, with a trivial characteristic
function F> = 0. On the other hand, ¥, corresponds to a transformation with a characteristic
function F(z*) = Zk arz;. We note that X £ and X Fr commute and the evaluation of the

BCH series in (3.12) is a simple task.
Suppose that (4.9) is also true for other functions, in particular for §2 = —¢tH. Then we
have

exp(—Xs)zp = exp(t X p)ze .

In order to compare the two series we assume § = S{H). Hence,
exp ( — %fﬁ)zk = exp(iti'g)zk .
Then the comparison shows that the series are linked by the substitution

ds
p fhand) 4.10
it — T, ( )}
where the negative sign is not important because it can be absorbed in the definition of the
parameter £, A similar transition from quantum mechanics to statistics is well known and
can be realized by

1
— 4,
it — T @.11)
where kg is the Boltzmann constant and T is the thermodynamic temperature. In the case
that we accept (4.11), the comparison with (4.10) yields

a 1 (4.12)

dif  kgT
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which shows the thermodynamic relation between entropy (represented by §), energy
(represented by H) and the temperature 7. Of course, this is not an exact proof, however,
the consideration shows the direction in the search for an inferpretation of the real part

S(zg, 7).

One of the most fundamental properties of the entropy is the increase during an
irreversible physical process. A similar property can be found for the real part of the
generating function too. Let ¢, F be the generating and characteristic function, respectively,
of an infinitesimal canonical transformation.

O(z,2%) =65 — i6tH F(z*) = 8sf (z") (4.13)
where 8¢ and &t are small real parameters. Using (4.4) we get
52 =3fE@) + f*@))  H = arbimrary

and the infinitesimal transformation of the coordinates is given by the linear terms in the
parameters d¢ and 3t

05 . BH s df . 9H
8z; azk 2 8z dzp

Sz =up — g =

Now we calculate the increment of S(zg, z;;) with respect to this transformation

35 as
55=Y [ Loz + 2spr) .
I(sz 2T ")

Inserting the infinitesimal transformations 8zx, 8z} one obtains

N 738 88
= 2: — s )
88 = 28¢ ( o sz) i5¢{S, H}. (4.14)

Hence, in the special case § = S(H) the Poisson bracket {5, H} vanishes, i.e. the function
S is a conserved quantity with respect to the time evolution (variation of 3¢). Nevertheless,
we find with 8z > 0 an increment of S under the transformation given by

N
3¢
=—2—ki

where the connection § = 2(f(z*)+ f*(z")) is used on the right-hand side. More precisely,
(4.15) shows the property of monotony only because the sign of 82 can be arbitrarily chosen.
It must be underlined that the validity of (4.15) is not secured for {5, H} 7 0 and in the
case of global transformations. Of course, the infinitesimal transformation with 8z # 0
also changes the imaginary part of the generating function. The corresponding increment
is given by

2
> (4.15)

azk

N
3 dH af a8H af*)
H=2 LA 4.16
é 3 kZ (az,-c dz} + zf Az @10

‘We close this section with the remark that by elimination of 3¢ in (4.15) and (4.16} a direct
connection between 85 and 8 H can be obtained.
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5. Entropy of ideal quantom gases

The discussion of section 4 indicates that there are some hints that the canonical
transformations with a non-trivial characteristic function can be connected with important
physical quantities. Then the real problem is the realization of examples of exact global
transformations. In [6,9] we bave investigated two special types of transformations, where
the generating function is determined by the entropy of an ideal quantum gas. However, the
connection between the generating and characteristic functions has not been analysed up to
now. Here we shall fill this gap. In order to make this section self-contained, a modified
derivation of the transformations in question is given which is based on the content of
section 3.

At first we consider the type (i) transformations and choose the following characteristic
function

N
F(zp) = aln(z) CRY
k=1

where the a; are real parameters. The logarithmic function In{z*) is considered as the
principal branch of the general logarithmic function. Let $(zy, z;) be the generating function
with

{®, ¢} =0. (5.2)

Then the real part Re(®) = Sg(zz, z;) of the generating function is given by the Lie
function £ formed by F and F* (cf (4.5))

R S (5.3)
Instead of (5.2) the simple assumption Im(®) = O can also be used to reduce (3.12) to
(5.3). Taking notice of {2.8) and (5.1), the first few terms of the BCH expansion are given
by

28g = F* + F + L{F*, F}+ 5{(F* — F), {F*, F}} + -~

where
a2
F*+F=Y ank  3{F Fy=1) -
k Bk
(54)
1 * * 1 a,f
BUF = F) P Fli=-13 " *%...
x

where we have defined the abbreviation [y = zjz;. The form of (5.4) shows that the BCH
series can be considered as a power series in the parameter o, (cf [4]), i.e. in the sense
of perturbation theory the first few terms determine an approximation of S5 (z;, z;) for all
sufficiently small &;. Furthermore we observe that the right-hand side of (5.4) depends upon
the I, only. This dependence suggest an ansatz of the form

Sty = Sz, 2) = Spy(&) - (5.5)
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In order to determine the function Sgy(Z) we use (3.7)(i) which can be considered as a
consequence of (3.12)(3). Inserting the characteristic function (5.1) equation (3.7)(i) becomes

" A a,
exp(—X¢)z = exp(—2Xs, o = 2, + Z—f
k

where

X Sl = Z

The infinite series can be summed up by means of the fact that z is an eigenfunction of
the operator X,,. Hence,

3S() Qg
exp T 43 _Zk+“‘;
Z;

OF

28
exp (2 : I‘:)Jk =1 +a. (5.6)

The last integration is easy to perform and yields

N
fk) ( Ik) I Ik]
3 ® k§=1', a [(1 + b CH))

ag

where an additional constant of integration is possible. Obviously, (5.7) is the important
entropy formula of Planck [10] which stands at the beginning of quantum mechanics. In
order to check their nature as a Lie function, we calculate the power series representation
with respect to the parameter g, and compare the result with the BCH series (5.4). Without
any restriction the special case of one degree of freedom is considered. The Taylor expansion
of £(a) reads

1 32‘.;' 1 9%| ,
E(a)_§(0)+—‘ 28a2 +Ea§0a + -
where
EM) =0 % =In(J +a) —Ina
da 58)
2 1 1 P -1 1 e

3> (a+1) a ?a® (a+1)2+

i.e. in the limitz — 0 and 7 5 0 21l (non-trivial) terms of the series are divergent. Moreover,
the order of the divergence increases as the order of the expansion increases. For 2 moment
this seems to be a serious problem but there is a simple renormalization procedure. We
use the fact that the transition from (2.7) to (2.8) is not unique and the Lie function is
determined up to a constant only. Therefore a shift

E(z, 7", @) =&(z, %, a) + (@)
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with a suitable c{a) can remove the divergence. It is easy to show that in our case the
constant must be chosen to he

cl@y=allna—1).

Then the Taylor series is regular and, moreover, it corresponds exactly to the BCH series (5.4).
At this stage of the considerations one may suppose that the appearence of the entropy of
an ideal Bose gas is an accident; however, let us consider the type (ii) transformations. We
choose the same characteristic function as for the type (i) transformation

N
Glz) = F*(zp) = Y _ aIn(ze) (5.9)
k=1

and make a similar ansatz as (5.5), i.e.
Rel W (zx, 25)1 = Sany 2k, 250 = Say(lr) -
Using (3.7)(ii) one can calculate the function Sg;) (). The result is
ud I LN L. (L
n = 228G = — ;ak [(1 - a) In (1 - EZ) + = In (E)] (5.10)

which is, of course, the entropy of an ideal Fermi gas. In order to check the nature of
the Fermi-entropy as a Lie function we investigate (3.12)(ii). Using (2.6) and (2.11) in
(3.12)(ii) we get

CX” e—i:r}:’, — 8_26[2‘1) e—}?f;—(_zk, .

The operators b'¢ » and X; commute as a consequence of the dependence n(J;} in (5.10) and
the BCH theorem provides

1 —izJ + cla) = —G(z) — G*(—z) + G (z), G*(—z1)}
+ 151G (—2) — Gzp), {G(2e), G* (—z)}} + - - (5.11)

where c(a;) is a suitable renormalization constant which is independent of z; and z;. The
right-hand side is easy to calculate by means of (5.9) and one obtains

. N la} 1la}
n—m.f+c(ak)=kz=1: —akln(—Ik)-i-i};--l-—é}E-i—--- .

On the left-hand side one can perform the Taylor expansion with respect to the parameters
ax, where the relations im = In(—1), ¢(ax) = — 3, ax(Inax — 1) and (5.10) must be used,
We note that this Taylor expansion gives the same result as the BCH series. Of course,
we have only calculated the first three terms of the series, but we expect that there is also
an agreement for the higher order powers of the parameters a;. Because we have chosen
the same characteristic function (5.9) for the type (i) and the type (ii) transformation, the
relation (4.8) must be valid. The Poisson bracket {£, J} and all higher order brackets vanish
as a consequence of the dependence £ = §(I;) and with (5.1) we obtain

N +ay) =) +ind (5.12)
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where J is the unitary invariant. Equation (5.11) is easy to confirm by means of 2 direct
calculation which makes use of (5.7) and (5.10). Moreover, one proves the validity of (3.16)
and (3.17) in the case of the special generating functions ® = 8;, and W = S;.

One of the most important aspects of the functions Sq(/;) and Sg;y(Jx) is their generator
property with respect to the canonical transformations, i.e. the entrapy plays an active role
similar to the energy H. The associated transformations of the complex coordinates are
given by

. . -
(L T5(Sp.0) : W =¢ xsmzk = /1+ I_kzk
k

(5.13)
£ @
(i) Te(Sgiy, ) : Wy = eSSz} = /I—" ~1z
k
and, moreover, for the square of the modulus of the coordinates
(i) wpwy = ZxZ; + Gx
(5.14)
(ii) WrWy = @ — LTy -

Hence, the Bose-entropy (5.7) generates a franslation wheras the Fermi-entropy (5.10)
generates a glide reflection in the [-space. More precisely, the half of the comresponding
entropies generates the transformation. The mapping (5.13)(ii) has a fixed point lying at
2% = ai/2 and, moreover, the Fermi-entropy is an invariant function with respect to the
transformation (5.13)(ii), i.e.

n(wiwe) = mlax — L) = n{le) = n(zfz) . (5.15)
A two-fold application of the type (ii} transformations yields the original coordinates z, i.e.
Tg(S(ii], 0)=1

and therefore Tr allows only two numerical values [, and ay — I, for the square of the
modulus. This is a typical spin % property when the I, are identified with measurable
quantities, for example with the energy in the harmonic oscillator picture. We suppose that
the connection between spin and statistics can be attributed to the more direct connection
between entropy and associated transformations. This seems to be a very fundamental level
of physics.

6. Summary

We have shown in this paper that the canonical transformations in the complex phase space
can be labelled by two functions, e.g. by the pair € (zz, 3}, F(z;) for the type (i) mappings.
This is contrary to the Lie series representation of the canonical transformations in a real
phase space because in that case there is only a single real function which generates the
mappings. The main difference to the transformations in a real phase space is caused by the
existence of non-trivial characteristic functions F(z;). The function F is a complex-valued
one and therefore it cannot be a physical observable. Nevertheless, by using the BCH theorem
one can form quantities from these complex functions which have an immediate physical
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meaning. Section 5 clearly shows that the entropy of ideal quantum gases is such a Lie
function formed by the special characteristic function (5.1). Moreover, it must be underlined
that the entropy plays an active role because it generates a canonical transformation similar to
the energy which generates the time evolution of the system. Obviously, the characteristic
function is the central point of interest because it determines both the Bose-entropy and
the Fermi-entropy. Up to now we have no principle which provides those characteristic
functions (e.g. {5.1)) which are important in physics. However, we believe that the study
of continuous families of canonical transformations yields some hints to the meaning of
the characteristic function. A discussion of the relationship between finite and infinitesimal
representations of a one-parameter subgroup of the canonical transformations (cf [11]) may
be helpful in this connection. On the other hand, the special functional dependence of the
functions F(z;) or G(zi) suggests that there may be a connection to the elements of the
Bargmann space of the entire analytic functions [12]. A similar direction comes from the
correspondence of the transformations (5.13) to the action of raising and lowering operators |
in quantum mechanics.

Of course, there are many other important questions concerning the canonical
transformations in the complex phase space. However, our study has shown that the
investigation of the classical transformation apparatus in the complex domain provides
unexpected physical results. This seems to support the view of Moshinsky and Seligman
[13] that classical mechanics is not, as usually assumed, a simple asymptotic form of
quantum mechanics.
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